

DTIC
SIELECT E 0

JN1 7 1985

G i--

APPROVED FOR PU"LIC PELEASE;

DISTRIBUTION IS UNLIMITED (A)

DESIGN ISSUES

FOR

- Ada PROGRAM SUPPORT ENVIRONMENTS

A CATALOGUE OF ISSUES

3

Aiccession oS
NTIS GRA&I

SAI-81-289-WA DTIC TAB
Unanouc,' ~TUnannounced [
Just t 1,I_

October 1980 -

Distribution/Dr. David A. Fisher Availability Codes

Iis Special

This report was supported by the Defense Advanced
Research Projects Agency under DARPA Order No. 3456,
Contract No. MDA903-80-C-0188 monitored by the Defense
Supply Service, Washington, 72.C. The views and con-
clusions contained in this document are those of the
authors and should not be interpreted as necessarily
representing the official policies, either expressed
or implied of the Defense Advanced Research Projects
Agency of the United States Government.

w

IIJ- ATLANTA * ANN ARBOR * BOSTON * CHICAGO * CLEVELAND * DENVER * HUNTSVILLE e LA JOLLA
A LITTLE ROCY * LOS ANGELES * SAN FRANCISCO * SANTA BARBARA * TUCSON * WASHINGTON

SCIENCE APPLICATIONS, INC.
1710 Goodridge Drive, 12th Floor, McLean, Va. 22102

I.-o.g

ACKNOWLEDGEMENTS

The author would like to thank John Buxton, Tom Cheatham,

Steve Crocker, Larry Druffel, Steve Squires, Tim Standish, and
Bill Wulf for their thorough and insightful reviews of a draft
version of this paper and for the many helpful comments and
suggestions they have provided.

..

S.•

. - .- S-..S

* DESIGN ISSUES

FOR

Ada PROGRAM SUPPORT ENVIRONMENTS

A CATALOGUE OF ISSUES

TABLE OF CONTENTS

PAGE
I. Introduction...1

II. Ada Program Forms.. 2
A. General Form.. 2
B. Compiler and Tool Intermediate Forms............. 2
C. Ada Program Input-Output Forms.................... 3

III. Command Language and Executive Functions..............4
A. External Interface Conventions_~..:..........4
B. Command Language System and Inte r pretation....... 6
C. Host Process Control and Scheduling.............. 8

IV. Host System Database.................................... 9
A. Objects... 9

- B. Directory... 9
C. Versions.. 10
D. Configurations...................................... 10
E. Partitions.. 10
F. Hitr rsration............................... 12
G. Physical Input-Output Formats..................... 12

V. Other Host System Facilities........................... 137
A. Error Recovery Facilities..................13
B. Performance Guarantees and Efficiency............ 13
C . Ada Libraries and Assembly........................ 14
D. Generic Help Facilities............................ 14
E . Ada Compiler.. 15
F. Ada Interpreter.................................... 15
G. Network Interface.................................. 15
H. Other APSE Host Tools.............................. 16

VI. Target Machine Facilities............................... 16
A . Target APSE Tools.................................. 16
B. Ada Run-Time Package............................... 17
C. Standard Ada Library............................... 18

VII. Conclusions, and Recommendations........................ 19

REFERENCES

* * * ~VJU ~ '-.-, - .

I. Introduction

..-'This paper catalogues many of the design decisions
necessary to the design of an Ada program support environment
(APSE). The emphasis is on those design decisions which af fect
the APSE users and tool builders. It is hoped that early
identification and resolution of these design decisions will
maximize the simplicity, usefulness, and ease of use for any APSE

* while permitting tool building efforts to begin in parallel with
pimplementation of the kernel APSE. The catalogue includes both

design decisions and conventions on the form, function and
performance of the various internal and external interfaces, but
does not address other design decisions critical to the
implementation and internal representations of the kernel APSE.

* ~The APSE and kernel AtSE requikemen~d as,,ve n h

Stoneman (11 and its supporting documents (2,3,4,51 are assumed
to be valid. Particularly important is that the Ada programming
language will be an integral part of any APSE so that the
Steelman requirements [61 will be satisfied by any APSE and the
kernel APSE will provide direct access to all Ada features in the
host environment without providing duplicative alternative APSE
concepts to satisfy requirements (e.g., multi-tasking,
synchronization) that have been dealt with adequately in the Ada

* design [7]. Although neither new requirements nor rationale for
existing requirements are given in this paper, Stoneman and
Steelman requirements will sometimes be paraphrased to provide
context. It is assumed throughout this paper that the reader is
familiar with the vocabulary and concepts of the Stoneman and of
Section 13 of Steelman.

It should be remembered that Ada and APSEs are intended
primarily for the design, development, test, maintenance, and
evolution of military embedded computer applications and other
similar systems. Such systems are characterized as large (50 to
100 thousand source lines and larger), long lived (15 to 20 years
or more) and continuously changing (with annual changes sometimes
of the same magnitude as the total system). Such systems are

* also characterized by real time constraints, the need to
interface and control nonstandard input-output devices, the needL
for concurrent processing and control, and requirements for fail
soft and fail safe execution.

The catalogue of design decisions is given in an outline
form which attempts to group related issues. The design of the
kernel APSE should specify the specific design decision or the
proposed convention *for each item of the outline. Wherever
possible the design should take form of an Ada package
specification giving the calling format for the operations and an
E n gli sh language description o f th e ir function.

o - . "

II. Ada Program Forms P.

A variety of logical representations is needed for Ada
programs to support compilers, system design, derivation and
implementation tools.

A. General Form. A general purpose from which
encompasses the needs of all compilers and tools is needed. It
must be open-ended because all the specific needs cannot be
anticipated at the time of its design. It should provide
operations for accessing and modifying the information content of
objects, for annotating objects with attributes, and for
traversing networks formed by relationships between objects.

B. Compiler and Tool Intermediate Forms. A variety of
intermediate representations for Ada programs is needed in any
compiler as a function of the phase within the compilation
process, the compilation technique being used, the degree of
optimization being applied, and the target machine
characteristics. Never-the-less, several specific intermediate
forms can be identified for any compiler and their common
attributes specified. For each the design should give the form
as a specialization of the general form (see II. A above). It
should identify the specific logical forms, attributes and
interpretations for each representation used at the interfaces
between the parts of the accompanying compiler, and should
distinquish between attributes common to all compilers and those
which are unique to the accompanying compiler.

1. Parser Output. The intermediate form for
parsed Ada programs to be used by language
editors and pretty printers and as input to
the target machine independent phases of
compilation. Data structure, operations,
and interpretation of any accompanying
symbol or other tables should be included.

2. Semantically Enhanced Form. The
intermediate form in which the compile time
Ada semantic checking has been completed and L
other semantic information about the source
program may be encoded in an easily
accessable form. Typically their general
form would be used in various phases of
analysis, transformation, and target
independent optimization of programs.

3. Code Generation Form. This intermediate
form provides the interface between the
"front end" and the code generation phase of
compilers. The form should be target

.......... ,. '
...........................

machine independent, but might have
attributes dependent on the architectural
group of the target (e.g., general register
vs. stack) or on the degree of machine
dependent optimization to be applied. It
can be more efficient than the Semantically
Enhanced Form because much of the earlier
analyses information is not needed by the
code generator or because the specific uses
of the information within code generators is
well understood. It might be specialized
for some use such as debugging of gathering
statistics.

C. Ada Program Input-Output Forms. There are several
forms required for the exchange of Ada programs between systems.
Unlike the forms of II. A. and II. B above which can be described
solely in terms of their interface characteristics, the
Input-Output forms must have a host system independent physical
representation as well.

1. Pretty Print Form. There should be a
specified format for indentations, etc. for
the exchange of source programs, publication
of algorithms in Ada, and supported by Ada
language editors.

2. Inter-Host Transfer Form. There should be a
specified format for the exchange of
programs in intermediate language form
between host systems. This can be done by
providing a one-one translation between
intermediate language and character string . -

data (a la TCOL), by providing a machine
independent form for intermachine
communication of any Ada data structure
including intermediate structures (see also
IV. G.4.), or both. Note that there is not
a semantic difference between inter- and
intra- host transfers. In both cases there
are lots of attributes generated by various
tools, but not needed or supported by all
tools. The inter-host form must provide a
mechanism for efficient transfering of the
needed attributes over relatively narrow
bandwidth channels.

3. Code Representation Form. There must be a
form for transfer of target code from host
to target machines. Although such forms
must be target machine dependent, they
should be host machine independent, there
should be only one per target instruction
set architecture (ISA), and there should be

Z.

2. ".."."

common conventions for relocation,
parameterization, error checking and
diagnostics at load time. Common
characteristics for all code forms and
specific representations and conventions for
each code generator of the accompaning
compiler should be provided with the design.

III. Command Language and Executive Functions

The kernel APSE must provide common interfaces and
conventions among host users and host system programs, a command
language for directing and scheduling host system functions,
conventions to ensure commonality in the use of tools, and a
comprehensive set of host system utilities. Most of the issues
below will be equally important in APSE and tool design. The
idea is to satisfy the critical requirement for consistency
throughout the APSE by establishing common conventions and
accessable implementations of those conventions at the level of
the kernel APSE.

A. External Interface Conventions. Standard interface
processes are required as intermediaries between the external
user of the host system and any host system program (whether a
host user program, software tool, system utility, or the command
language itself). The interface provides a common set of
conventions to the user regardless of the subsystem being used
and provide a common interface to system functions regardless of
the users terminal characteristics. Separate interface routines
are required for the three major interface device categories
(i.e., batch, linear interactive, and high bandwidth graphic
interactive) because their bandwidth and display characteristics
dictate major differences in their interface granularity (i.e.,
in the size and frequency of interactions). The kernel or
minimal APSE design should show what facilities and conventions
are provided for such characteristics as the following: ..

L

.-

1. Character, word and line input error
correction for interactive input. These
might take the form of commands entered - -

through an editor or interface routine
consistent with the kind of user interface.

2. Standard means (or control keys) for
terminating commands.

3. Standard command, control key or whatever
for ending (i.e., normal termination) of any
subsystem.

4. Standard forn, conventions, kernel
facilities, and controls for invoking,
interpreting, and responding to subsystem
help facilities and diagnostics.

5. Standard conventions and facilities for
undoing and redoing commands.

6. Conventions and controls for user requested
command completion and typing extension
(i.e., for system extension of user typing
of commands or arguments in unambiguous
contexts and default situations.

7. Conventions, controls and meaning of
returning to system command language level.

8. Conventions and controls for user generated
asynchronous interrupts for command
or program interruption and output
termination.

9. Facilities for user alteration of any of the
above conventions or control key assignments

as a function of user preference or terminal
characteristics as specified in a user
profile.

10. Conventions on how each of the above are
communicated to or interact with
utilities, tools, or user programs within
the host system. The internal interfaces
should be described in terms of requirements
and conventions for the host system Ada
programs implementing the utilities,
tools, or user programs (e.g., external
controls might appear as end of record on
read, a raised exception, an entry call or
accept, or as a global Boolean variable).

*** .~- '. . .

B. Command Language Syntax and Interpretation. The
command language is used by the external user to invoke tools and
host programs, control their scheduling, query the system,
parameterize system functions, interact with running programs and
tools, request immediate execution, and conduct interactive
debugging. Thus, the command language as discussed here combines
the interactive interface functions of interpretive languages and
debugging s'ystems with the job control functions of tradtional
batch systems. The goals of simplicity, ease of learning and
understanding, and minimization of concepts all suggest that the
command language for an APSE should be as similar to Ada as
possible. The differences in the purpose and uses of command and
progamming languages however impose a number of considerations
that must be dealt with in the command language design.

I. Manipulatable Objects. Because the command
language is used to create, modify, test and
query Ada programs and their activations,
command language must not only have all the
Ada types but must also provide a definition
for programs, packages, variables,
declarations, types and other Ada
compile-time, run-time entities as types
defined in Ada, and probably others.

2. Composition. Because the protocols of
interaction, let alone their function, cannot
be known at the time of APSE design for all
systems commands, development and maintenance
tools, testing and debugging systems, and
interactive host applications that eventually
will be needed, the command language must
provide a complete facility for defining,
composing (i.e. functional composition), and
retaining (i.e. as in a library) operations.
Composition is a primary characteristic of
general purpose programming languages
(including Ada), but not of many job control
languages. These considerations coupled with
the desire for simplicity and minimization of
concepts in the APSE impose a requirement for
an Ada based command language providing
access to the full composition facilities of
Ada.

3. Syntactic Issues Although the full

generality of the Ada language (and its
syntax) must be available to the command
language user, typical job control language
usage has been one operation at a time with
arguments that are literals rather than

expressions or variables. The command
language might provide special syntax for
this kind of use or show that the facilities
for command completion and typing extension

(see III. A.6) satisfy the need. The latter
approach is particulary desirable because it
will not require any syntactic extensions.

4. Semantic Differences. Any differences in
interpretation of declarations, statements or

expressions in the command language from
those in Ada programs should be detailed in
the design. These might include immediate
elaboration of declarations or execution of
expressions prior to entry or compilation of
subsequent statements, alternative processing
for exceptions (e.g., report to user at
terminal rather than terminate task or
program), and access to variables external to

programs.

5. Context. The design must clearly define how

the user specifies, alters, and controls the
context of execution of command language
expressions and statements (i.e., command
language scope and visibility rules).

6. Display. The user should be able to obtain
automatic display of results of command
language expressions executed from the
terminal. The design should define when and
how this is accomplished. Note that this is

trivial in expression languages.

C. Host Process Control and Scheduling. Among the most
mportant command language facilities are those for control and
cheduling of user host processes. Any given user may have
everal activities going on simultanously, may need to pass data
etween them, may need to suspend one activity to accomplish an
uxiliary activity (e.g., send message to get a routine to edit,
r compile and execute to obtain an argument to the current
ctivity), and to change the process to which the users terminal
s attached.

1. Processes. If there is to be any
difference between the host- command language
process mechanism and the Ada facilities for
task activation, rendevorus, delay, and
selection, they should be detailed in the
design and strong justification provided.

2. Terminal Connection. The command language
should have operations for specifying and
changing which of the user's processes are
interacting with the terminal. The design
should specify the effect of terminal input
or output requests from processes not
currently interacting with the terminal,
whether the set of processes for a user are
organized in a forest or hierarchical
structure, and whether terminal and process
associations are made explicitly or
implicitly.

3. Scheduling. The scheduling discipline to be
used among independent processes of a given
user and among processes of different users
of the same host system is beyond the scope
of the Ada language semantics and thus
cannot be adopted directly. The
kernel APSE design should specify a standard
algorithm or provide a mechanism for user
control of such scheduling.

4. Query. How and to what extent can processes
(and users) interrogate the status of the
system, the associated user terminal, the
user0 s accounting information, the terminal
characteristics, etc.? The design should
specify the operations for query of system
variables and status, to what variables they
apply, and what protection is provided
against improper use. Note that all of this
can be done in Ada.

-h .
'

.

IV. Host System Database

The database is the central feature of an APSE, acts as the
repository for all information of a project throughout the
project life cycle, and provides the central mechanism for
operation of APSE tools. The kernel APSE design must provide a
complete logical description of the database facilities including
the set of operations (actually Ada subprogram specifications) to
create, modify, restructure, access, assign, or otherwise

manipulate databases.

A. Objects. Each distinguishable component of the
database including files will be called an "object". The kernel
APSE must provide several specific properties for objects.

1. Name. Each object must have a unique
internal name that can be used by any
program or tool, can be passed as arguments
and stored in variables (i.e., objects act
like and might be implemented as Ada
objects of access types).

2. Type. Any entity to which a user, tool, or
system designer might want to refer must be
representable as an APSE object. Thus Ada
programs, subprograms, packages, expression,
varables; APSE tools, symbol tables, and
program representations; any Ada data type;
types, declarations, identifiers, and
control structure; and configurations,
versions, groups, and partition are all
examples of APSE objects.

3. Relations or Annotations. The kernel APSE
must provide operations to establish,
modify, and interrogate relations among
objects.

B. Directory. The kernel APSE or at least the minimal
APSE must provide a directory system that associates (external)
symbolic names with objects of the database. Symbolic names

* shall be constructed as a sequence of identifiers. Although it
- . "will be possible to uniquely identify an object by its full name

sequence, it should be possible to provide a partial name and to
"- obtain disambiguation on the context (e.g., the current user),

* the intended usage (e.g., Ada overload resolution on type, or use
restricted to a particular partition), and defaults (e.g., the
current version). The design should detail the directory system
and operations.

KC. Versions. A group of objects may exist within the
database as different versions of the same "abstract object".
The design must allow for the use of a single (internal) name for
the abstract object with implicit selection of the relevant
version based on the use requirements, type or partitions. An
abstract Ada program object, for example, might have versions for
each level of its derivation from an abstract program
description, versions for various phases of the compilation
process, and code versions for several target machines, but an
attempt to print the abstract object as an Ada program would
select the pretty print symbolic version.

D. Configurations. The APSE is intended for use in large
systems involving many people concurrently and over long periods
of time. The programs and software systems to be developed and
maintained are not simple objects, but involve large collections
of objects in many versions undergoing change from many quarters.
The kernel or minimal APSE must provide a mechanism for
establishing stable configurations from designated fixed versions
of the component objects, for creating new local configurations
by incremental modification, and for ensuring that no component
object of an accessible configuration can be deleted or modified. -

* E. Partitions. Partitions are a mechanism for dividing
parts of the database into a variety of collections for various
purposes some of which are listed below. Partitions are a
generalization of the Ada type mechanism (and thus used for
version disambiguation in APSEs). Unlike types however, objects
can be dynamically added or removed from partitions and
partitions need not be disjoint. The kernel APSE should provide
a general mechanism for user definition and modification of
partitions. There may be a need for hierachical indices to the
components of a partition. For each of the partitions listed
below, the kernel APSE design should include a complete
definition of the facility and its operations or should show that
such a facility can be built by an APSE implementor from
primitives provided in the kernel APSE.

I. Accounting. It may be necessary to
partition the objects of an APSE according
to the account to which the associated
storage and execution costs are to be
charged. Minimally, the kernel APSE must
provide a mechanism for determining the
amounts of storage space and execution
cycles associated with a given accounting
partition.

..

n 2. Protection. It must be possible to protect

one (logical) "user" of an APSE from another
by partitioning the objects and files of the
database into collections in which the user
controls which objects of his partition can
be read, altered or executed by another
user.

3. Authentication. An APSE database can be
partitioned according to what objects and
files are accessable to a given physical

b. user (i.e, person). Typically a user wears
several hats and therefore has access to
several protection partitions. Similarly,
protection partitions are often associated
with multiperson projects and therefore
overlap several authentication partitions.
The kernel APSE should provide a mechanism
for user definition of authentication
routines and some primitive mechanism such

as passwords in the minimal APSE.

4. Storage. The storage media (e.g., main
memory, on line peripheral memory, and
archival storage) is another important
partitioning of the database. Users should
be able to specify, query, and control the
storage partition associated with objects

and files under their control.

5. Security. The kernel APSE design should be

clear as to what extent it supports
multilevel security. The security
classification of an object or file
represents a judgement of its sensitivity
regardless of its accounting, protection,

authentication, or storage partition and is
therefore an independent partitioning.

Security issues are not restricted to the
usual notion of classification, but include

any provisions for maintaining the integrity
of the APSE or of systems developed using
the APSE in responce to accidental or
intentional damage.

L.

F. History Preservation. The design should clarify how 0
it satisfies the APSE requirement for recording and preserving

* information relating current and accessable noncurrent
; configurations. How does the proposed design manage the

* . trade-off between the users desire to retain historical
information that may be required later and the storage costs of
many versions of objects that are never accessed? How does the
kernel APSE determine or assist the user in determining which
historical versions can be deleted?

G. Physical Input-Output Formats. The kernel APSE design
U must specify the physical representation used for the exchange of

host system files, database objects, and Ada run-time data
objects among host and target machines. Conversion of all data
objects into a symbolic human readable form with all
communications as text strings is simple and easy to define, but
is expensive in the amount of data that must be transmitted and
in the amount of processing required in both sending and
receiving machines, and may be impractical for transfer of large
volumes of data in distributed environments. A binary format

. close to that of machine representations would be less expensive
in execution but is difficult to define independent of particular
machine architectures. Physical input-output representations are

* needed for:
1. Text Files
2. Ada source programs
3. Ada intermediate language files
4. All data types in Ada programs
5. All objects of the APSE database

L--

r.-'

- ** . . ~ * - * *- * * . *.** - . -..

* ~ - -. . - -I -* ~ -* . -. *.. - - -. . - -* *. -*..*..."-

V. Other Host System Facilities,

There are several other kernel functions and minimal APSE
" tools not discussed above.

A. Error Recovery Facilities. The kernel APSE must be
designed and implemented to guarantee the integrity of the host
system in the presence of hardware, software, and user errors.

I. Kernel APSE Protection. How does the kernel
design prevent the user from accidentally or

i intentionally destroying, modifying, or
accessing restricted portions of the kernel,
APSE tools, and their data?

2. Error Diagnostics. How does the kernel APSE
discover and isolate hardware and software
errors within the host system? How does it
identify and respond to inconsistancies in
the APSE database?

3. Error Recovery. How does the kernel APSE
respond to the discovery of hardware,
software, or database errors? What does it
do to recover the system? What does it
report to the operator? to the user?

4. Fail Safe Execution. How does the kernel
design ensure fail safe execution of the
system? What provisions are made in the
database updating operations to prevent

destruction or partial loss of the database
during system failures? How much of his
current session can a user lose during a
system failure? Is he given a clear and
accurate report of the extent of any loss?
Does the user get automatic restart at the

point of failure?

5. Fail Soft Execution. Although not an APSE
requirement, any provision in the kernel
design for fail soft execution should be
identified. Can the kernel reconfigure the

host system in the presence of hardware
failures (i.e., hardware subsystem loss) to

limit the effect to restricting services or
degradation in performance?

B. Performance Guarantees and Effiency. The utility and
effectiveness of any APSE depends critically on its performance
characteristics.

. ~ . . *. * . . . ~ . * *~~. ~ *. *~ . *. . *. *. *.. . **.~. . . .

1 Operating System. The kernel APSE defines a
virtual operating system which is machine
independent. Implementation on top of an
existing operating system gives access to
existing tools of the system and permits the
APSE to operate along with other nonAPSE
systems, but may impose a performance
penalty on the APSE user. How is the
trade-off resolved in this kernel APSE
design? How is the resulting performance
degradation or access problem overcome in

* the design? How is machine dependence
avoided?

2. Response Times. Does the kernel APSE
provide any performance or response time
guarantee for simple requests? What
constitutes a simple request? Are there
fixed levels of response which the user
knows and understands (e.g., responses not
made within one second will require 30
seconds)?

3. Levels of Service. Does the kernel APSE
provide different classes of service? How
are these determined? What guarantees are
provided? What happens when the guarantee
cannot be met?

4. Performance Degradation. What action is
taken by the kernel when the demands for
service exceed the available resources?
What precautions are taken in the kernel
design to avoid excessive consumption of
resources by the kernel itself under
overloaded conditions? Are performance
limitations assigned uniformly, randomly, or
to particular classes or users? How is this
achieved in the design?

C. Ada Library and Assembly. The minimal APSE must
provide a library manager for separate compilation of Ada
programs and operations for assembling the code objects for a

* specified configuration into a load module for a given target
' machine.

D. Generic Help Facility. What standard conventions are
proposed for subsystems and tools when reporting errors to users?
What conventions are proposed for the user to query subsystems
and tools about their status, what commands are available, and
what syntax is proposed? What kernel or minimal APSE tools are
provided to enforce or assist the tool developer in using these
conventions?

• I

• -: . ,- .- c .: '- . .. % . =. . ,-'-': ..""' .' ' . .:.. ,t,. '. '

E. Ada Compiler. Although the compiler must implement
the full Ada language, there are a number of compiler design
decisions that must be determined and reported to the APSE user
and tool developer. Like most APSE features, these facilities
should be defined as Ada packages.

1. Target Machines. What target instruction
set architecture and target operating
systems are supported? What is the minimum
configuration supported for each target
machine? What target perephirals are
supported?

2. Compiler Pragmas. What pragmas are
supported by the compiler? What are their
parameter configurations, agrument options,
and effect on the compilation process?

3. Foreign Language Interfaces. What, if any,
languages does the compiler support for
foreign code interfaces within Ada programs
(i.e., the Ada INTERFACE pragma) and for
what target machines?

F. Ada Interpreter. Does the command language

interpreter include a full Ada interpreter? Is an Ada
interpreter otherwise included among the minimal APSE tools?
What, if anything, distinguishes the interpreter code from
intermediate language for Ada program (see section II.B) and the
semantically enchanced form in particular? What debug facilities
are provided in conjunction with the Ada interpreter?

G. Network Interface. It is very likely that any APSE
will be implemented in a local or broad based computer network.
Those developed for the Department of Defense for example
minimally should be accessable over the ARPA net.

I Remote Users. How does the kernel APSE
support remote (i.e., over a network) users
of the APSE? Do remote users use the same
interface conventions? Do they have access
to the full set of APSE facilities? Do they L
enjoy the same quality of service and how is
this guaranteed by the kernel APSE design?

2. Mail System. What mail system is provided
among APSE users either locally of over a
network? Is it compatible with existing _

• mail systems of the network? Is it
integrated with the APSE database? Is the
mail system under program control so that it
can be used as a basis for additional
automation?

3. File Transfer. Does the kernel APSE provide
access to the network file transfer
protocol? If so how are transfers between
the APSE and nonAPSE systems managed,
prevented from violating the APSE protection
mechanisms, and data formats converted?

4. Inter-APSE Cooperation. Is provision made
for access to the APSE database at other
network nodes, for cooperation among APSEas
of a network, or for load sharing among
APSEs?

H. Other APSE Host Tools. What other host system tools
are included in this minimal APSE design? What are their data
structures and operations? How are they integrated with the
other kernel and minimal APSE facilities? What tools or classes
of tools beyond the scope of the minimal APSE have been
considered in the kernel APSE design? Have sufficient handles
been provided to allow later incorporation of these tools in
individual APSEs?

VI. Target Machine Facilities

The concepts of separate host and target machines and cross
compilation are fundamental to APSEs and impose requirements for
target system tools, run-time support packages, and application
libraries. The distinction between host and target systems in an
APSE is somewhat blurred because the host machine is always one
of the target machines for the Ada compiler of an APSE and host
tools are written in Ada and thus can be compiled to any target
machine with sufficient resources. The distinction is one of
use, rather than location. As a general rule the APSE design
must include the facilities of this section for each target
machine (although in many cases, only recompilation will be
required).

A. Target APSE tools. Certain tools are meaningful in
the target environment.

I. Linker. A linker is required to complete
those parts of the system assembly (see
V.C.) which could not be done in the host
system, to do address relocation, and to do
any final parameterization or option ..-.

selection as a function of the target " "
machine configuration.

2. Loader. There must be tools capable of
off-line or down-line loading of the final
target code to the target system.

.. °'. .

.. - ~.-wv

3. Dynamic Analysis Tools. Any facilities
for snapshoting, breaking, tracing,
monitoring, or timing execution must be
provided as target system APSE tools. It is
important that dynamic analysis tools report
their findings to the user in Ada source
program terms.

4. Postmortem Analyses. Static analysis of the
target system at the point of a break or
failure is often very useful in debugging or
testing a system. Although the analysis
itself can probably best be done on the host
system, a target APSE tool is needed to
extract the data from the target system and
make it accessable to the analysis tools.

B. Ada Run-Time Package. Ada is a machine and operating
system independent language. Thus standardization and the
resulting portability of Ada software is achieved by including
many of the traditional operating systems functions as language
primitives and eliminating any need for explicit calls to the
underlying (target) operating system. The price paid is that an
Ada run-time package must be developed for each target machine
(typically as an additional cost in developing the code generator
portion of the compiler). Only those routines actually used by
the target application, however, need by loaded and executed in
the target machine.

1. Scheduler. Ada requires a
first-in-first-out by priority scheduler to
implement the tasking and rendezvous
including entry calls and select.

2. Storage Manager. Ada requires a storage
allocator and garbage collector for
applications which use the full generality
of access types (i.e., for uses in which
static and stack storage disciplines are not
sufficient and in which failure to
dynamically recover inaccessable storage is
too expensive).

3. Exception Propagation. The desire to avoid
all execution overhead for exceptions which
are not raised, imposes a requirement for a
run-time routine to propagate exceptions
when they are raised.

,' ." 1," ' .. . " " - ,"

4. Real Time Clock. The run-time package must
maintain a real time clock, make it
accessable to the Ada target code in
appropriate precisions and resolutions, and
implement the delay operation.

5. Low Level Input-Output. The run-time
package must implement the Ada low level
input-output functions to provide a machine
(but not device) independent Ada language
level interface to those implementing device
responders.

C. Standard Ada Library. The design and implementation
of Ada compilers is simplified by providing definition facilities
within the language and relegating many traditional language
primitives to the standard library. The advantage is that the
standard library functions need be implemented only once (in Ada)
to become available to all compilers. The disadvantage is that a
compiler is of little use without the standard library.

1. High Level Input-Output. The standard Ada
high level input-output package must be
implemented for each physical device to be
supported.

2. System Package. The standard "system"
package defines the machine dependent values
of the compile-time program accessable
target machine configuration description.

3. Standard Package. The "standard" package
defines the predefined indentifiers for
Boolean, integer, floating point, and
character types.

4. Other Packages. Any other library packages
to be provided with kernel or minimal APSE
and Ada compiler should have a package
specification and English language
description in the design documentation.
These might include a numeric package,
definition of a variable length string type,
or application data base package.

J .

WWW~dm- d-W

VII. Conclusions and Recommendations

This paper has been prepared in response to the immediate
need for a list of items which can be checked when comparing and

evaluating forthcoming designs from the three Air Force and one
Army contracts for the design of the kernel and minimal APSE.

There are an enormous number of issues that must be dealt with in
the design of an integrated program support environment. We have

attempted to catalogue as many of these as possible. There is,
however, no reason to believe that this list is complete. Quite
the contrary, the understanding of highly integrated software
development and maintenance environments currently is so limited
that a complete catalogue is probably not possible.

There are also limitations inherent in the catalogue
approach. By concentrating on specific issues and features of
the kernel and APSE designs, it detracts from the emphasis that
rightfully should be given to other aspects of the design. These
issues include:

* the important role that human factors should
play throughout the kernel and APSE design,

0 global issues related to ensuring simplicity
and minimization of concepts as viewed by

the APSE user,

* the importance of small granule tools and
small granule interactions to achieve the

synergy of APSE tools necessary to realize
the potential inherent in the composition of

tools,

how modern Ada features, such as strong
typing and information hiding, and "good"
Ada style will alter the needs of an Ada
based environment, and

0 the critical requirement for common

conventions among the various kernel APSE

implementations.

Never-the-less we are hopeful that the catalogue will prove
useful in the design and evaluation of the kernal APSE and that
it will stimulate additional research and expreimentation on the
many issues that are raised. In several cases we have barely
been able to characterize the issues. It is unlikely that the
designers will be able to address all issues with a high degree
of confidence. Thus, the catalogue should be viewed as an aid in
the design of the kernel APSE, but one that should be expanded
and tuned as our understanding and experience in the design and
use of integrated environments grow.

.- .- .. ~ ~.-.- ""-. i..5- j-f-i- . -. '- 1-j5. *i.j

Finally, given the dearth of understanding of environmental
issues and the limitations of the catalogue approach we recommend
that it be supplemented by other tests during design and
evaluation of the kernal and of APSEs. One promising approach,
suggested in reference 3, is to examine tentative designs with
respect to intended purposes and uses of the environment as seen
from several different vantage points. For example, if the
activities of documenting, debugging, and testing of Ada programs
are not considered as integral to the APSE design, we might not
be driven to necessary contemplating of the impact of
documentation, debugging and testing on the kernel design
decisions and vice versa. Will the kernel and APSE designs
support the Software Lifecycle View, the Software Quality View,
the Management Discipline View and the Maintenance and
Enhancement View (see ref. 3) of an integrated environment? A
combination of widespread public review and examination form a
varity of view points coupled with analyses based on the
catalogue should avoid the critical deficiencies of some existing
environments and maximize the usefulness of the resulting kernel
APSE and APSE systems.

.•-.,

REFERENCES

"Stoneman", Requirements for Ada Programming Support

Environments; John Buxton, et.al.; DARPA, (February 1980),
49 pp.

Proceedings of Workshop on Environment, Certification and
Control of DoD Common High Order Language; T.A. Standish,
ed.; University of California - Irvine, (June 1978).

K. Initial Thoughts on the Pebbleman Process, D.A. Fisher and
T.A. Standish, IDA Paper P-1392, (June 1979), 73 pp.

Ada Support system Study -- Requirements and Functions S
Specification; Vic Stenning, et. al.; SDL and SSL, (March
1979), 34 pp.

5. Ada Environment Workshop; HOLWG; Harbor Island, San Diego,
(November 1979).

5. "Steelman", Department of Defense Requirements for High
Order computer Programming Languages; D.A. Fisher and P.R.
Wetherall; HOLWG,(June 1978).

7. Reference Manual for the Ada Programming Language --

Proposed Standard Document; U.S. Department of Defense, 1
(July 1980).

~~~~~. . ... . . . . . .,.. .


